

ROBOTICS

Product specification

IRB 460

Trace back information:
Workspace 22B version a4
Checked in 2022-06-01
Skribenta version 5.5.019

Product specification IRB 460-110/2.4

OmniCore

Document ID: 3HAC081954-001

Revision: A

The information in this manual is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guarantee or warranty by ABB for losses, damage to persons or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written permission.

Keep for future reference.

Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2012-2022 ABB. All rights reserved. Specifications subject to change without notice.

Table of contents

	Over	Overview of this product specification			
1	Desc	ription	9		
	1.1	Structure	9		
		1.1.1 Introduction	9		
		1.1.2 Different robot versions	11		
	1.2	Safety standards	13		
		1.2.1 Applicable standards	13		
	1.3	Installation	14		
		1.3.1 Introduction	14		
		1.3.2 Operating requirements	15		
		1.3.3 Mounting the manipulator	16		
	1.4	Calibration and references	21		
		1.4.1 Calibration methods	21		
		1.4.2 Fine calibration	22		
		1.4.3 Synchronization marks and axis movement directions	24		
		1.4.3.1 Synchronization marks and synchronization position for axes	24		
		1.4.3.2 Calibration movement directions for all axes	25		
	1.5	Load diagrams	26		
		1.5.1 Introduction to load diagrams	26		
		1.5.2 Load diagrams	27		
		1.5.3 Maximum load and moment of inertia	28		
		1.5.4 Maximum TCP acceleration	29		
	1.6	Mounting of equipment	30		
	1.7	Robot motion	33		
		1.7.1 Introduction	33		
		1.7.2 Performance according to ISO 9283	35		
		1.7.3 Velocity	36		
		1.7.4 Robot stopping distances and times	37		
	1.8	Customer connections	38		
	1.9	Maintenance and troubleshooting	40		
	1.5	1.9.1 Introduction	40		
		1.0.1 Introduction	-10		
2	Spec	ification of variants and options	41		
	2.1	Introduction to variants and options	41		
	2.2	Manipulator	42		
	2.3	Floor cables	45		
	2.4	Application	46		
Inc	dex		47		

Overview of this product specification

About this product specification

This product specification describes the performance of the manipulator or a complete family of manipulators in terms of:

- · The structure and dimensional prints
- · The fulfilment of standards, safety, and operating equipment
- The load diagrams, mounting or extra equipment, the motion, and the robot reach
- · The specification of available variants and options

The specification covers the manipulator using the OmniCore controller.

Usage

Product specifications are used to find data and performance about the product, for example to decide which product to buy. How to handle the product is described in the product manual.

The specification is intended for:

- · Product managers and product personnel
- · Sales and marketing personnel
- · Order and customer service personnel

References

Reference	Document ID
Product manual - IRB 460	3HAC039842-001
Product manual - OmniCore V250XT	3HAC073447-001
Product specification - OmniCore V line	3HAC074671-001
Product specification - Robot stopping distances according to ISO 10218-	3HAC048645-001

Revisions

Revision	Description
Α	First edition.

1.1.1 Introduction

1 Description

1.1 Structure

1.1.1 Introduction

Robot family

IRB 460 is ABB Robotics latest generation of, 4-axis palletizing robot, designed with a focus on its high production capacity, short cycle time at a high payload, long reach together with the very high uptime, which is significant for ABB's robots. It is available in one version with a handling capacity of 110 kg and a reach of 2.4 m.

Customer connections as power, signals, Bus signals and one air are integrated in the robot, from the robot base to connections at the robot tool flange.

Control system

The robot is equipped with the OmniCore controller and robot control software, RobotWare. RobotWare supports every aspect of the robot system, such as motion control, development and execution of application programs, communication etc. See *Operating manual - OmniCore*.

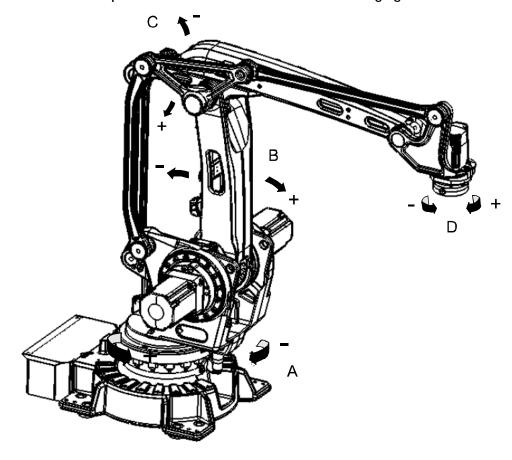
We have added a range of software products - all falling under the umbrella designation of Active Safety - to protect not only personnel in the unlikely event of an accident, but also robot tools, peripheral equipment and the robot itself.

The IRB 460 manipulator can be connected to the following robot controllers:

OmniCore V250XT

Safety

Safety standards valid for complete robot, manipulator and controller.


Additional functionality

For additional functionality, the robot can be equipped with optional software for application support - for example communication features - network communication - and advanced functions such as multitasking, sensor control etc. For a complete description on optional software, see the *Product manual - OmniCore V250XT*.

1.1.1 Introduction Continued

Manipulator axes

The IRB 460 manipulator has 4 axes as shown in the following figure.

xx1000001337

Position	Description
Α	Axis 1
В	Axis 2
С	Axis 3
D	Axis 6

1.1.2 Different robot versions

General

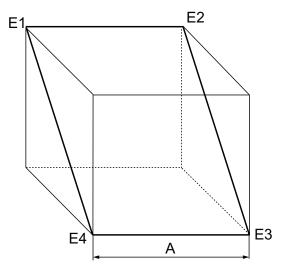
The IRB 460 is available in one version, for floor mounting (no tilting allowed around X or Y axis).

Robot type	Handling capacity (kg)	Reach (m)
IRB 460	110 kg	2.4 m

Manipulator weight

Robot type	Weight (kg)
IRB 460	925 kg

Other technical data


Data	Description	Note
	The sound pressure level outside the working space	$<70\ dB$ (A) Leq (acc. to Machinery directive 2006/42/EG).

Power consumption at max speed (vmax)

Type of movement	IRB 460
ISO cube Max. velocity	2.5 kW

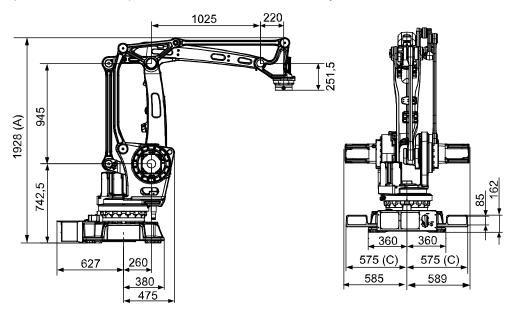
Robot in calibration position	IRB 460
Brakes engaged	0.22 kW
Brakes disengaged	0.56 kW

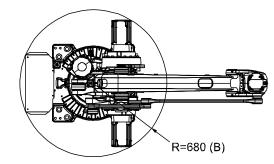
The path E1-E2-E3-E4 in the ISO cube is shown in the following figure.

xx1000000101

Position	Description
Α	1,000 mm

1.1.2 Different robot versions


Continued


Power factor (cos φ)

The power factor is above 0.95 at a steady state power consumption higher than 2.0 kW, when the IRB 460 is connected to the OmniCore V line.

Dimensions of IRB 460

The following figure shows the rear, side and top view of the IRB 460 manipulator (dimensions in mm). Allow 200 mm behind the manipulator for cables.

xx1000001031

Position	Description
Α	2278 mm max working range
В	Radius for axis 3 motor
С	Forklift width 1150 mm

1.2.1 Applicable standards

1.2 Safety standards

1.2.1 Applicable standards

General

The product is compliant with ISO 10218-1:2011, *Robots for industrial environments - Safety requirements - Part 1 Robots*, and applicable parts in the normative references, as referred to from ISO 10218-1:2011. In case of deviation from ISO 10218-1:2011, these are listed in the declaration of incorporation. The declaration of incorporation is part of the delivery.

Robot standards

Standard	Description
ISO 9283	Manipulating industrial robots – Performance criteria and related test methods
ISO 9787	Robots and robotic devices – Coordinate systems and motion nomenclatures
ISO 9946	Manipulating industrial robots – Presentation of characteristics

Other standards used in design

Standard	Description
IEC 60204	Safety of machinery - Electrical equipment of machines - Part 1: General requirements, normative reference from ISO 10218-1
IEC 61000-6-2	Electromagnetic compatibility (EMC) – Part 6-2: Generic standards – Immunity standard for industrial environments
IEC 61000-6-4	Electromagnetic compatibility (EMC) – Part 6-4: Generic standards – Emission standard for industrial environments
ISO 13849-1:2006	Safety of machinery - Safety related parts of control systems - Part 1: General principles for design, normative reference from ISO 10218-1

Region specific standards and regulations

Standard	Description
ANSI/RIA R15.06	Safety requirements for industrial robots and robot systems
ANSI/UL 1740	Safety standard for robots and robotic equipment
CAN/CSA Z 434-03	Industrial robots and robot Systems - General safety requirements
EN ISO 10218-1	Robots and robotic devices — Safety requirements for industrial robots — Part 1: Robots

1 Description

1.3.1 Introduction

1.3 Installation

1.3.1 Introduction

General

IRB 460 is designed for floor mounting (no tilting allowed around X or Y axis), end effector with max. weight of 110 kg including payload, can be mounted on the mounting flange (axis 6). For more information, see *Load diagrams on page 26*.

Working range

The working range of axis 1 can be limited by mechanical stops.

1.3.2 Operating requirements

1.3.2 Operating requirements

Protection standards

Manipulator IP67.

Explosive environments

The robot must not be located or operated in an explosive environment.

Ambient temperature

Description	Standard/Option	Temperature
Manipulator during operation	Standard	0°C ⁱ (32°F) to +45°C (113°F)
For the controller	Standard/Option	see Product specification - OmniCore V line
Complete robot during transportation and storage	Standard	-25°C (-13°F) to +55°C (131°F)
For short periods (not exceeding 24 hours).	Standard	up to +70°C (158°F)

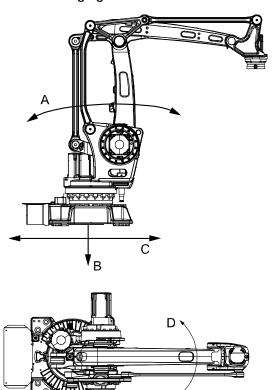
At low environmental temperature < 10° C is, as with any other machine, a warm-up phase recommended to be run with the robot. Below 5° C this warm-up phase is mandatory. Otherwise there is a risk that the robot stops or run with lower perfomance due to temperature dependent oil-and grease viscocity.

Relative humidity

Description	Relative humidity
Complete robot during operation, transportation and storage	Max. 95% at constant temperature

1.3.3 Mounting the manipulator

1.3.3 Mounting the manipulator


Maximum load

Maximum load in relation to the base coordinate system.

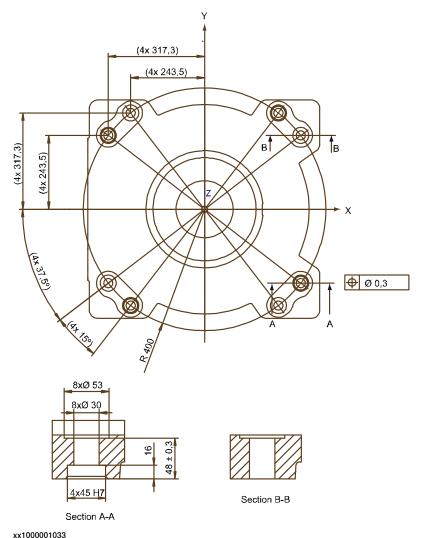
Floor Mounted

Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	± 6.2 kN	± 10.6 kN
Force z	10 ± 3.8 kN	10 ± 6.5 kN
Torque xy	± 13.7 kNm	± 23 kNm
Torque z	± 5.3 kNm	± 7.9 kNm

The following figure shows the direction of forces.

xx1000001032

Α	Torque _{xy} (T _{xy})
В	Force _z (F _z)
С	Force _{xy} (F _{xy})
D	Torque _z (T _z)


Note regarding $\mathbf{M}_{\mathbf{x}\mathbf{y}}$ and $\mathbf{F}_{\mathbf{x}\mathbf{y}}$

The bending torque (M_{xy}) can occur in any direction in the XY-plane of the base coordinate system. The same applies to the transverse force (F_{xy}) .

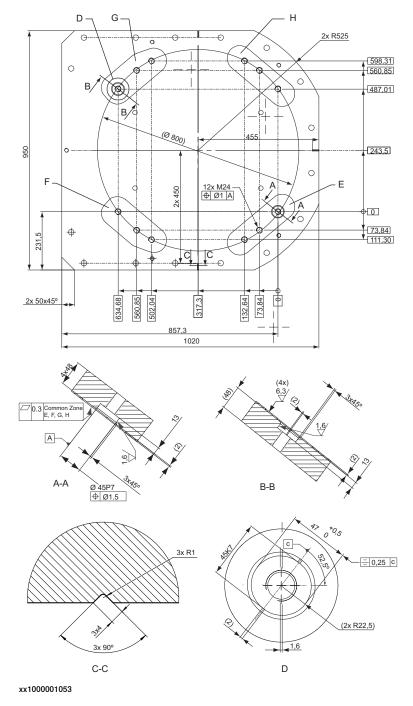
1.3.3 Mounting the manipulator Continued

Fastening holes robot base

The following figure shows the hole configuration (dimensions in mm).

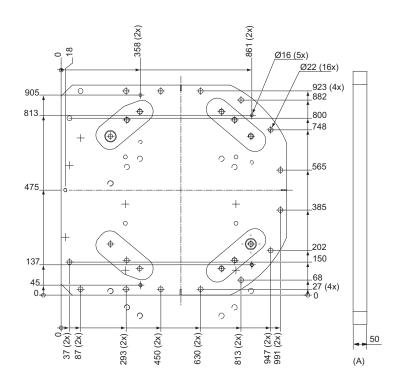
.....

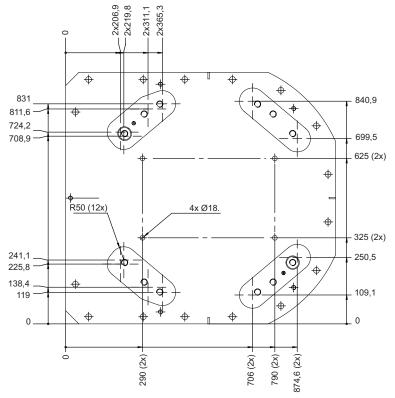
Recommended screws for fastening the manipulator to the base	M24 x 100 8.8 with 4 mm flat washer
Torque value	725 Nm


Note

Only two guiding sleeves shall be used. The corresponding holes in the base plate shall be circular and oval according to the following base plate drawing. Regarding AbsAcc performance, the recommended are the chosen guide holes those are according to the following base plate drawing.

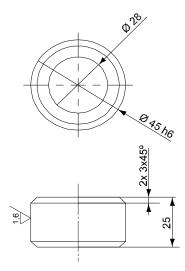
1.3.3 Mounting the manipulator *Continued*


Base plate drawing


The following figure shows the base plate (dimensions in mm).

E, F, G, H Common tolerance zone (accuracy all over the base plate from one contact surface to the other)

1.3.3 Mounting the manipulator Continued



xx1000001054

Position	Description
Α	Color: RAL 9005
	Thickness: 80-100 μm

1.3.3 Mounting the manipulator

Continued

xx1000001055

Position	Description
Α	Guide sleeve protected from corrosion

1.4 Calibration and references

1.4.1 Calibration methods

Overview

This section specifies the different types of calibration and the calibration methods that are supplied by ABB.

More information is available in the product manual.

Types of calibration

Type of calibration	Description	Calibration method
Standard calibration	The calibrated robot is positioned at calibration position.	Axis Calibration
	Standard calibration data is found on the SMB (serial measurement board) or EIB in the robot.	

Brief description of calibration methods

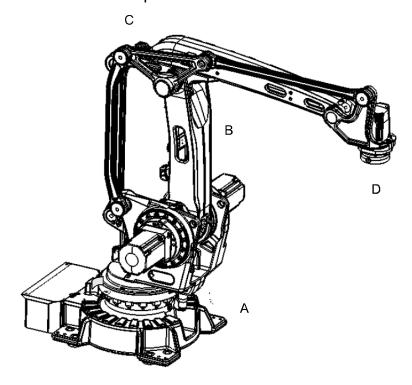
Axis Calibration method

Axis Calibration is a standard calibration method for calibration of IRB 460. It is the recommended method in order to achieve proper performance.

The following routines are available for the Axis Calibration method:

- · Fine calibration
- · Update revolution counters
- · Reference calibration

The calibration equipment for Axis Calibration is delivered as a toolkit.


The actual instructions of how to perform the calibration procedure and what to do at each step is given on the FlexPendant. You will be guided through the calibration procedure, step by step.

1.4.2 Fine calibration

1.4.2 Fine calibration

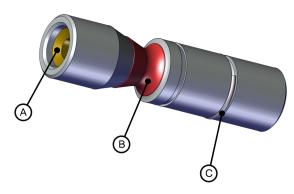
General

Fine calibration is made using the Axis calibration method. The following figure shows all axes in zero position.

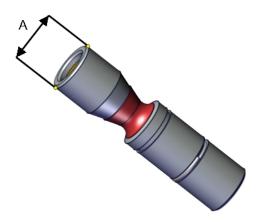
xx1000001038

Position	Description
A	Axis 1
В	Axis 2
С	Axis 3
D	Axis 6

Calibration	Position
Calibration of all axes	All axes are in zero position
Calibration of axis 1 and 2	Axis 1 and 2 in zero position Axis 3 to 6 in any position
Calibration of axis 1	Axis 1 in zero position Axis 2 to 6 in any position


Calibration tools

WARNING


If any part is missing or damaged, the tool must be replaced immediately.

1.4.2 Fine calibration Continued

xx1500001914

Α	Tube insert
В	Plastic protection
С	Steel spring ring

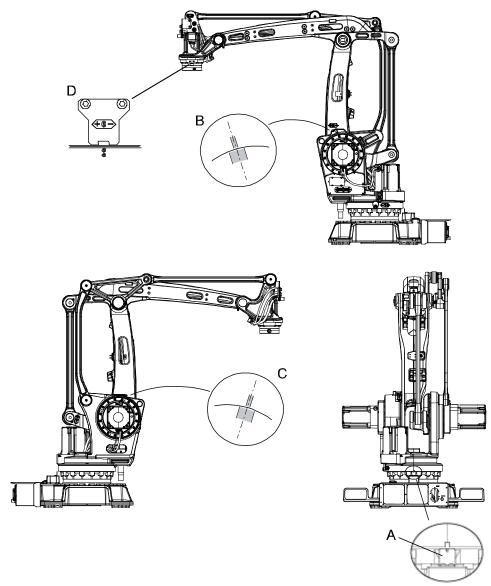
xx1500000951

Α	Outer diameter
---	----------------

If including the calibration tool in a local periodic check system, the following measures should be checked.

- Outer diameter within Ø12g4 mm, Ø8g4 mm or Ø6g5 mm (depending on calibration tool size).
- Straightness within 0.005 mm.

1.4.3.1 Synchronization marks and synchronization position for axes


1.4.3 Synchronization marks and axis movement directions

1.4.3.1 Synchronization marks and synchronization position for axes

Introduction

This section shows the position of the synchronization marks and the synchronization position for each axis.

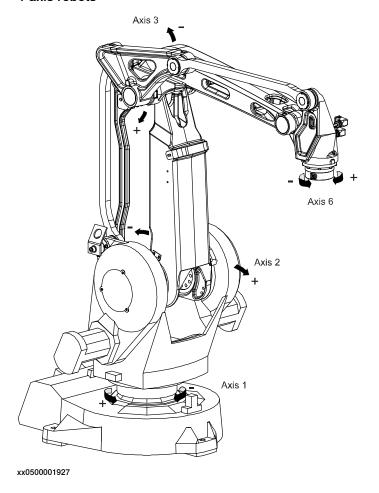
Synchronization marks, IRB 460

xx1000001433

Α	Calibration plate, axis 1
В	Calibration mark, axis 2
С	Calibration mark, axis 3
D	Calibration plate and marking, axis 6

1.4.3.2 Calibration movement directions for all axes

1.4.3.2 Calibration movement directions for all axes


Overview

When calibrating, the axis must consistently be run towards the calibration position in the same direction in order to avoid position errors caused by backlash in gears and so on. Positive directions are shown in the graphic below.

Calibration service routines will handle the calibration movements automatically and these might be different from the positive directions shown below.

Manual movement directions, 4 axes

Note! The graphic shows an IRB 260. The positive direction is the same for all 4-axis robots

1.5.1 Introduction to load diagrams

1.5 Load diagrams

1.5.1 Introduction to load diagrams

Information

WARNING

It is very important to always define correct actual load data and correct payload of the robot. Incorrect definitions of load data can result in overloading of the robot.

If incorrect load data is used, and/or if loads outside the load diagram are used, the following parts can be damaged due to overload:

- · motors
- gearboxes
- · mechanical structure

WARNING

In RobotWare, the service routine LoadIdentify can be used to determine correct load parameters. The routine automatically defines the tool and the load.

See Operating manual - OmniCore, for detailed information.

WARNING

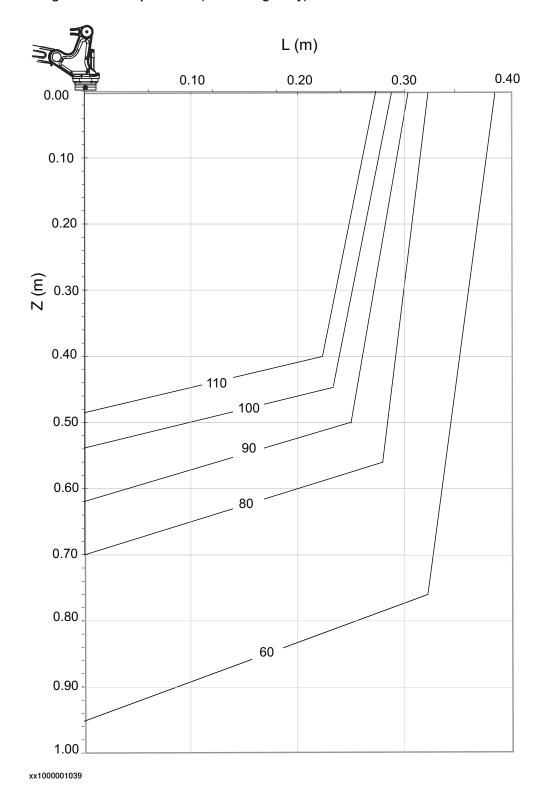
Robots running with incorrect load data and/or with loads outside the load diagram, will not be covered by robot warranty.

General

The load diagram include a nominal payload inertia, J_0 of 5 kgm². No extra load on upper arm.

At different moment of inertia the load diagram will be changed. For robots that are allowed tilted, wall or inverted mounted, the load diagrams as given are valid and thus it is also possible to use RobotLoad within those tilt and axis limits.

Control of load case with RobotLoad

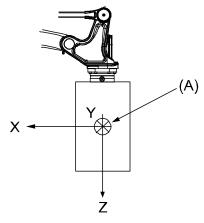

To verify a specific load case, use the RobotStudio add-in RobotLoad.

The result from RobotLoad is only valid within the maximum loads and tilt angles. There is no warning if the maximum permitted arm load is exceeded. For over-load cases and special applications, contact ABB for further analysis.

1.5.2 Load diagrams

IRB 460-110/2.4

The following figure shows the maximum permitted load mounted on the robot tool flange at different positions (center of gravity).


1.5.3 Maximum load and moment of inertia

1.5.3 Maximum load and moment of inertia

General

Load in kg, Z and L in m and J in \mbox{kgm}^2

Axis	Maximum moment of inertia
6	$Ja_6 = Load \times L^2 + J_{0Z} \le 70 \text{ kgm}^2$

xx1000001078

Position	Description
Α	Center of gravity

	Description
OK' OJ' OL	Max. moment of inertia around the X, Y and Z axes at center of gravity.

1.5.4 Maximum TCP acceleration

1.5.4 Maximum TCP acceleration

General

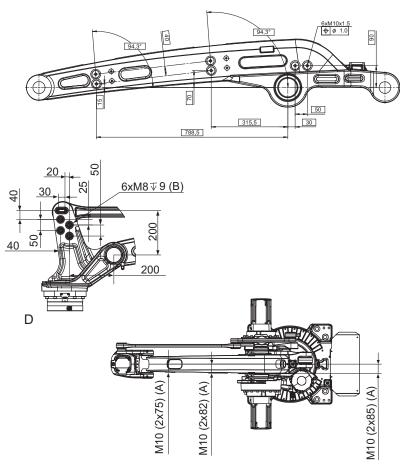
Higher values can be reached with lower loads than the nominal because of our dynamical motion control QuickMove2. For specific values in the unique customer cycle, or for robots not listed in the table below, we recommend then to use RobotStudio.

Maximum Cartesian design acceleration for nominal loads

	r	Controlled Motion Max acceleration at nominal load COG [m/s ²]
IRB 460	45	28

Note

Acceleration levels for emergency stop and controlled motion includes acceleration due to gravitational forces. Nominal load is defined with nominal mass and cog with max offset in Z and L (see the load diagram).

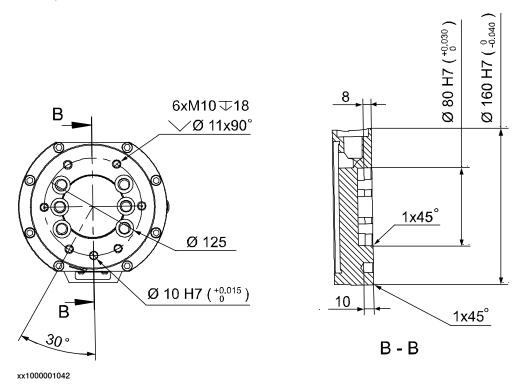

1.6 Mounting of equipment

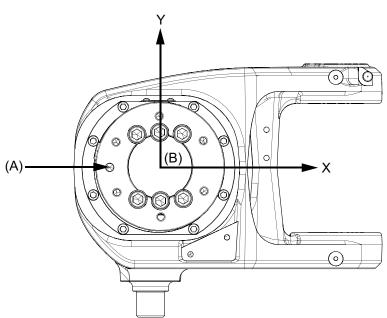
1.6 Mounting of equipment

General

Extra loads can be mounted on to the upper arm. Holes and definitions of masses are shown in the following figures.

For mounting of an external vacuum hose there are six holes on the upper arm. The max. weight for the vacuum hose and fastening device is 35 kg. When using the holes, the weight of the vacuum hose shall be reduced from the max. Handling capacity, for each variant respectively.


xx1000001041


Position	Description
Α	Mounting hole on upper arm
В	Drill depth 15 mm

1.6 Mounting of equipment Continued

Robot tool flange

The following figure shows the robot tool flange SS-EN ISO 9409;2004 (dimensions in mm).

xx1800001402

-	Tool flange in bottom view
Α	Locating hole
В	Tool coordinate system

1 Description

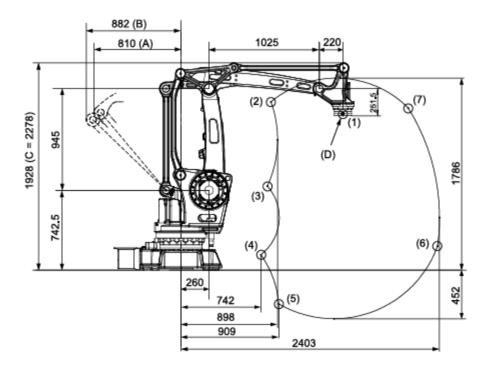
1.6 Mounting of equipment *Continued*

Fastener quality

When fitting tools on the tool flange, only use screws with quality 12.9. For other equipment use suitable screws and tightening torque for your application.

1.7 Robot motion

1.7.1 Introduction


Type of motion

Axis	Type of motion	Range of movement
1	Rotation motion	+165° to -165°
2	Arm motion	+85° to -40°
3	Arm motion	+120° to -20°
6	Turn motion	+300° to -300° Default +150 revolutions to -150 revolutions maximum ⁱ

The default working range for axis 6 can be extended by changing parameter values in the software. Option 3111-1 *Independent axis* can be used for resetting the revolution counter after the axis has been rotated (no need for "rewinding" the axis).

Illustration

The following figure shows the extreme positions of the robot arm specified at tool flange center (dimensions in mm).

xx1000001043

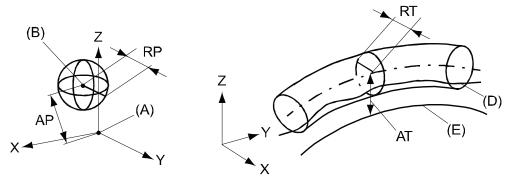
Position	Description	
Α	Max. working range	
В	Mechanical stop	
С	Max. working range	

1 Description

1.7.1 Introduction Continued

Position	Description
D	Tool flange center

Positions at wrist center


Position number, see figure above	X Position (mm)	Z Position (mm)	Axis 2 Angle (degrees)	Axis 3 Angle (de- grees)
1	1505	1437	0	0
2	836	1565	-40	-20
3	802	782	-40	25
4	742	145	55	120
5	909	-314	85	120
6	2385	223	85	20
7	2111	1510	45	-20

1.7.2 Performance according to ISO 9283

General

At rated maximum load, maximum offset and 1.6 m/s velocity on the inclined ISO test plane, with all six axes in motion. Values in the table below are the average result of measurements on a small number of robots. The result may differ depending on where in the working range the robot is positioning, velocity, arm configuration, from which direction the position is approached, the load direction of the arm system. Backlashes in gearboxes also affect the result.

The figures for AP, RP, AT and RT are measured according to figure below.

xx0800000424

Position	Description	Position	Description
Α	Programmed position	E	Programmed path
В	Mean position at program execution	D	Actual path at program execution
AP	Mean distance from pro- grammed position	AT	Max deviation from E to average path
RP	Tolerance of position B at repeated positioning	RT	Tolerance of the path at repeated program execution

Description	IRB 460-110/2.4
Pose accuracy, AP ⁱ (mm)	0.20
Pose repeatability, RP (mm)	0.20
Linear path repeatability, RT (mm)	0.11
Linear path accuracy, AT (mm)	3.89
Pose stabilization time, PSt (s)	0.65

AP according to the ISO test above, is the difference between the teached position (position manually modified in the cell) and the average position obtained during program execution.

The above values are the range of average test results from a number of robots.

1.7.3 Velocity

1.7.3 Velocity

Maximum axis speed

Axis number	IRB 460-110/2.4
1	145°/s
2	110°/s
3	120°/s
6	400°/s

There is a supervision function to prevent overheating in applications with intensive and frequent movements.

1.7.4 Robot stopping distances and times

1.7.4 Robot stopping distances and times

Introduction

The stopping distances and times for category 0 and category 1 stops, as required by EN ISO 10218-1 Annex B, are listed in *Product specification - Robot stopping distances according to ISO 10218-1 (3HAC048645-001)*.

1.8 Customer connections

1.8 Customer connections

General

Depending on the choice of options above the Customer connection will have different content. The choice of routing will not affect the content. See tables for signal content below.

For further information of the customer connection, see *Specification of variants* and options on page 41.

Media & Communication, Parallel communication and air

Туре	Application	Specification	Connection type	Supplier Article No.	Comment
Power (CP)	Utility power	4x0.75mm ² (5A/250VAC)	UTOW socket connector 26p, Bulkhead	UTOW 71626SH06	1x0.75mm ² protective earth
Signals (CS)	Parallel com- munication	11x AWG24 + 5x2 AWG24	UTOW socket connector 26p, Bulkhead	UTOW 71626SH06	3 Quad twisted, 5 screened pair twisted
Air (AIR)	Utility air	1x12.7 (1/2") P _{Nom} = 16 bar	Parker Push- lock,1/2" M22x1,5 Brass 24 de- gree seal		

Media & Communication, Ethernet, parallel communication and air

Туре	Application	Specification	Connection type	Supplier Art- icle No.	Comment
Functional Earth (FE)		10mm ²	M8 Cable lug		
Power (CP)	Utility power	4x0.75mm ² (5A/250VAC)	UTOW socket connector 26p, Bulkhead	UTOW 71626SH06	1x0.75mm ² protective earth
Signals (CS)	Parallel communication	11x AWG24 + 5x2 AWG24	UTOW socket connector 26p, Bulkhead	UTOW 71626SH06	3 Quad twisted, 5 screened pair twisted
Air (AIR)	Utility air	1x12.7 (1/2") P _{Nom} = 16 bar	Parker Push- lock,1/2" M22x1,5 Brass 24 degree seal		
Bus com- munication (BUS)	Ethernet/IP, PROFINET	4x0.4mm ²	M12, 4-poles, D-coded, male	Harting 21038821425	Ethernet CAT5e 100 Mbit ¹ .

Continues on next page

¹ Ethernet with wire colors according to PROFINET standard

1.8 Customer connections Continued

Media & Communication, DeviceNet, parallel communication and air

Туре	Application	Specification	Connection type	Supplier Article No.	Comment
Power (CP)	Utility power	4x0.75mm ² (5A/250VAC)	UTOW socket connector 26p, Bulkhead	UTOW 71626SH06	1x0.75mm ² protective earth
Signals (CS)	Parallel communication	11x AWG24 + 5x2 AWG24	UTOW socket connector 26p, Bulkhead	UTOW 71626SH06	3 Quad twisted, 5 screened pair twisted
Air (AIR)	Utility air	1x12.7 (1/2") P _{Nom} = 16 bar	Parker Push- lock,1/2" M22x1,5 Brass 24 de- gree seal		
Bus com- munication (BUS)	DeviceNet	2xAWG26 Z=120 Ohm (1MHz)	UTOW socket connector 10p, 71210SH06		
	BUS power & BUS utility	2x2 AWG24	Bulkhead		

1.9.1 Introduction

1.9 Maintenance and troubleshooting

1.9.1 Introduction

General

The robot requires only minimum maintenance during operation. It has been designed to make it as easy to service as possible:

- · Maintenance-free AC motors are used
- · Oil is used for the gear boxes
- The cabling is routed for longevity, and in the unlikely event of a failure, its modular design makes it easy to change

Maintenance

The maintenance intervals depend on the use of the robot, the required maintenance activities also depends on selected options. For detailed information on maintenance procedures, see *Product manual - IRB 460*.

2.1 Introduction to variants and options

2 Specification of variants and options

2.1 Introduction to variants and options

General

The different variants and options for the IRB 460 are described in the following sections. The same option numbers are used here as in the specification form.

The variants and options related to the robot controller are described in the product specification for the controller.

2.2 Manipulator

2.2 Manipulator

Variants

Option	IRB Type	Handling capacity (kg)	Reach (m)
3300-57	460	110	2.4

Manipulator color

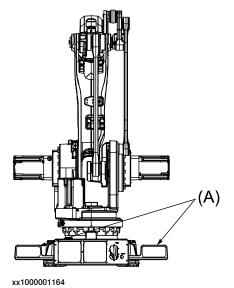
Option	Description	Note
209-2	ABB white standard	Standard color
209-202	ABB Graphite White standard	
209	Colors according to RAL-codes	

Note

Notice that delivery time for painted spare parts will increase for none standard colors.

Protection

Option	Description
3350-670	Base 67,IP67



Note

Base 67 includes IP67, according to standard IEC 60529.

Fork lift device

Option	Description
3318-1	Fork lift on base.

Continues on next page

2.2 Manipulator Continued

Position	Description
Α	Fork lift device (x4)

Working range limit axis 1

To increase the safety of the robot, the working range of axis 1 can be restricted by extra mechanical stops.

Option	Туре	Description
3323-3		Two stops which allows the working range to be restricted in increments of 7.5 or 15 degrees.

Warranty

For the selected period of time, ABB will provide spare parts and labour to repair or replace the non-conforming portion of the equipment without additional charges. During that period, it is required to have a yearly Preventative Maintenance according to ABB manuals to be performed by ABB. If due to customer restrains no data can be analyzed in the ABB Ability service *Condition Monitoring & Diagnostics* for robots with OmniCore controllers, and ABB has to travel to site, travel expenses are not covered. The Extended Warranty period always starts on the day of warranty expiration. Warranty Conditions apply as defined in the Terms & Conditions.

Note

This description above is not applicable for option Stock warranty [438-8]

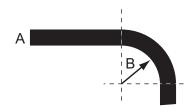
Option	Туре	Description
438-1	Standard warranty	Standard warranty is 12 months from <i>Customer Delivery Date</i> or latest 18 months after <i>Factory Shipment Date</i> , whichever occurs first. Warranty terms and conditions apply.
438-2	Standard warranty + 12 months	Standard warranty extended with 12 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-4	Standard warranty + 18 months	Standard warranty extended with 18 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-5	Standard warranty + 24 months	Standard warranty extended with 24 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-6	Standard warranty + 6 months	Standard warranty extended with 6 months from end date of the standard warranty. Warranty terms and conditions apply.
438-7	Standard warranty + 30 months	Standard warranty extended with 30 months from end date of the standard warranty. Warranty terms and conditions apply.

Continues on next page

2.2 Manipulator Continued

Option	Туре	Description
438-8	Stock warranty	Maximum 6 months postponed start of standard warranty, starting from factory shipment date. Note that no claims will be accepted for warranties that occurred before the end of stock warranty. Standard warranty commences automatically after 6 months from <i>Factory Shipment Date</i> or from activation date of standard warranty in WebConfig.
		Note
		Special conditions are applicable, see <i>Robotics Warranty Directives</i> .

2.3 Floor cables


2.3 Floor cables

Manipulator cable - Length

Option	Description
3200-2	7m
3200-3	15m
3200-4	22m
3200-5	30m

Bending radius for static floor cables

The minimum bending radius is 10 times the cable diameter for static floor cables.

xx1600002016

Α	Diameter
В	Diameter x10

2.4 Application

2.4 Application

PickMaster Ready

Includes conveyor tracking functionality. Digital I/O is needed for PickMaster functions.

Option	Description
3152-1	PickMaster Cell Ready
3152-2	PickMaster Robot Ready

PickMaster Vision

Includes conveyor tracking functionality. Digital I/O is needed for PickMaster functions.

Option	Description
3153-1	PickMaster Vision Ready
	REQUIRES: 3152-2 PickMaster Robot Ready

DressPack axis 6

Option	Description
3337-11	MH Parallel
3337-12	MH DeviceNet. Includes parallel signals
3337-13	MH EtherNet. Includes parallel signals, Supports ProfiNet, EtherNetIP

Connector kit manipulator

Option	Туре	Description
3330-2	CP/CS bus, Proc 1 base	For the Customer Power/Customer Signal connector and one Process connector on the manipulator base. Sockets for bus communication are included.
3334-2	CP/CS bus, Proc 1 axis6	Connector for customer power/customer signal/customer bus at axis 6 tool side.

Connection of Parallel/CAN DeviceNet communication

Following information specifies the cable length for Parallel/CAN DeviceNet/EtherNet floor cables cables for connections between cabinets and manipulator.

Option	Lengths
3201-2/3202-2/3204-2	7m
3202-3/3202-3/3204-3	15m
3202-5/3202-5/3204-5	30m

Index

calibration
standard type, 21
calibration marks, 24
calibration position
scales, 24
calibration scales, 24
category 0 stop, 37
category 1 stop, 37

D
direction of axes, 25

F
fine calibration, 22

N
negative directions, axes, 25

O
options, 41

P
positive directions, axes, 25
product standards, 13
S
safety standards, 13
scales on robot, 24
standards, 13
ANSI, 13
CAN, 13
standard warranty, 43
stock warranty, 43
stopping distances, 37
stopping times, 37
sync marks, 24
V
variants, 41
W
warranty, 43

ABB AB

Robotics & Discrete Automation S-721 68 VÄSTERÅS, Sweden Telephone +46 (0) 21 344 400

ABB AS

Robotics & Discrete Automation

Nordlysvegen 7, N-4340 BRYNE, Norway Box 265, N-4349 BRYNE, Norway Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.

Robotics & Discrete Automation No. 4528 Kangxin Highway PuDong New District SHANGHAI 201319, China Telephone: +86 21 6105 6666

ABB Inc.

Robotics & Discrete Automation

1250 Brown Road Auburn Hills, MI 48326 USA

Telephone: +1 248 391 9000

abb.com/robotics